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GENERAL THEORY OF THE SOLUTIONS OF THE EQUATIONS OF MOTION OF
AN ELASTIC MEDIUM OF DIFFERENT MODULI”

*%
V.P, MASLOV and P.P. MOSOLOV

{(** Mosolov, Petr Petrovich (1938 ~-1985) was the author of two mongraphs as well as a
number of fundamental results in the area of non-linear functional analysis, non~c¢classical
variational methods in the mechanics of continuous media, and the mathematical theory of
plasticity. He also participated in the publication of the journal PMM as a reviewer.)

The eguation to be investigated

vy = {uy —~ afug | g a = const (0.1)
for Ja|<1 describes one-dimensional longitudinal motions of an elastic medium of different
moduli /1, 2/. For a=1 describes analogous motions of an elastic granular medium, i.e., a
medium having a finite (positive) modulus under compression and exerting no resistance to
tensile forces. To be specific, the case 0< e<! is examined.

For the case when (< a<« 1 the kinds of discontinuities in the solution are classified
{shocks, signotons, semisignotons, simple discontinuities), and the concept of a local sol-
ution isintroduced, as describing the simplest qualitative structures of discontinuous sol-
utions (189 such structures). By piecing together the local solutions we can find the global
solution. The process by which discontinuities occur in the solutions and their bifurcation
are investigated,

A general theory of solutions is constructed for Eq.(0.1) in an analogous manner for
a = 1. In addition to the listed kinds of discontinuities, a new kind occurs here, a discon-
tinuity in the continuity of displacement (spall). Specific problems of wave reflection from
a free edge and from a rigid wall are considered in which distinctive, substantially non~
linear, effects appear.

Eguation (0.1} is a special case of the eguation

wy - (G {ughiy = 0 (0.2

to whose investigation many papers are devoted /3/. A number of facts are known about (0.2}
which distinguish it from linear second-order nyperbolic eguations. For instance, the Cauchy
problem for (0.2) with infinitely differentiable initial functions and ¢ (4).¢' (4) >0 cannot
have solutions with c¢ontinuous first- and second-order derivatives in the large, i.e., for
all 1>0 /4/. The generalized solution of the Cauchy problem for (0.2}

exists in the large /5/, but it is not generally unique. These facts alsc heid for (0.1}, &
deeper analysis of the soclutions can be perfcrmed in the case of (0.1) as compared with (0.Z)
of general form, and in particuliar, various versions of the discontinuities that crginate in
the sclution cof (0.1) and their kifurcations can be investigated in detail. .

The investigation of (0.1) is of interest both in connection with the general thecry cf
non~-linear hyperbolic equetions and in connection with the fact that problems in the theory
of elastic bodies of different moduli, elastic-plastic media /6/, phase transitions /7/, and
geophysics problems /8/ result in (0.1).

It is of interest to investigate the eguation

Uy = {lyg = [ ux}lx + 4. A = const 0.3

which describes the metion of a particle c¢f an elastic-granular medium in a gravity force field.
It turns out that the sclutions of (0.%}, in addition to the discontinuities inherent in the
solutions of (0.1), can have yet ancther kind of discentinuity, a break in the continuity

P
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(spall). Several specific problems with & clear physical interpretation exhibiting a sub-
stantial difference in the soluticns as compared with the analogous linear formulation of the
problem are solved for (0.3). These scltuions alsc show a manifold of qualitative effects

described by (0.3).
Note that, by analogy with {0.1), a general theory of solutions can be constructed for

the equation

Uy = {uy — e lux |z = A, fal<C i, A = const (0.4}

Solutions of (0.3) are limits of the sclutions of (0.4) as e¢-»1, a < 1. Bowever, (0.4) is

more complex than (0.3). Consequently, as will be done in Sect.6, it is natural to construct
a general theory of solutions directly for (0.3). Morecver, the solutions of (0.3} can be

considered as asymptotic forms of the solutions of (0.4) for a~1t.
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Equations of the form of (0.1) and (0.3) are of methodological importance since they
enable a fairly detailed mathematical investigation to be made of a large number of non-self-
similar problems on the one hand, and have a natural physical interpretation on the other.
The mathematical invesigation of these equations is quite fruitful and is far from being
exhausted in the present paper.

1. Generalized solution of equation (0.2). Pilecewise-smooth solutions.
Hugoniot conditions. No-growth conditions for the mechanical energy. A function
u {z, t}, such that the functions u;, ¢ {ux} are locally summable and

§{u,h, — g (u hydzdt =0, Vh(z, )& C~(Q) (1.1)

is called a generalized solution of (0.2) in the domain Q.

The definition (1.1) for the generalized solution corresponds to the Hamilton principle
/9/. Later Q has the form p<zr<«gq, 0t T<o, where p,g can be — o0, o< respectively.

Let us consider a finite number of smooth curves in

rg={x,t:z=xi(l)‘0<t<7’},i=i,...,N

that intersect each other at not more than a finite number of peints. The function wu{z, 1)
is called piecewise-smooth in Q if it is continuous in , has uniformly bounded derivatives
u., u; outside the lines I';that are uniformly continuous in any simply-connected open sub-
domain Q' that does not intersect Iy, i=1,..., N and whose boundary can have a non-empty
intersection with just one of the I';. In addition, it is assumed that locally summable func~
tions uy, ¢ (uy), exist in the domain Q N\ T, I = UI;.

From (1.1) integration by parts yields.

Theorem 1., A pilecewise-smooth function is a generalized solution of (0.2) if and only
if {0.2) is satisfied almost everyhwere in @ and the equations

Hzi" ) ug — g (u:\')]z{\f) =0, h"}:ri(l) =0 1.2
e =7 +0 ) —fla(t) =0, ) =1 —])

are valid on T .
Equations (l1.2) are called the Hugoniot conditions., It is known /3/ that the solution

of the Cauchy problem for (0.2) is not generally unique in the class of piecewise-smooth
functions. 1In this connection, we impose an additional constraint on the solution, correspond-
ing to the reguirement of local non-growth of the mechanical energy in the medium, and having
the form

a7yt

\(——wux):dxw(u,)u,dr 0, @O)=0 =g (2.3

Y

where ¥ is a contour in @ transversal tc I'; oriented counter-clockwise to the motion (the t
axis is directed upward, and the x axis to the right).
We will clarify the ineguality (1.3). We ccnsider the equation of motion of a visco-
elastic medium corresponding to (0.2)
gt - g (uF) — ud (u#y =0 4" () >0
The sclutions u* {r. #) are assumed tc be fairly smocoth functions, The eguation

/(11 A
K 1—-——— YR ) Jdu = (o (u) — py () g dt = \\ iy (k) (0, 2)? dr dt (1.4)
4 o

(D is the domain boundec ky the corntour ¥} focllows from Green's formula for the sclutior
ut (z. 1},

As p— 0, the sclution u*(z, t} tends to the solution u{z,!) of Eq.(0.2) for which
there may be discontinuities of the first kind in the first derivatives, i.e., w# and uh
are bounded while u,# has the form of a 8—like family of functions on the line of discon-
tinuities of the scluticon of {0.2). Conseguerntly, since the contour Y is transversal te T,
we have

S.uq’(u,“),u,udt—,O as u-——0
v

Passing to the limit as p-— 0 in (1.4), we obtain the inequality (1.3).

Theorem 2. Let uf{z. !} be a pa.ecem.se smooth function satisfying the Hugoniot conditions
on the line z=12a (1), f, <1<, where & ()50, [ud., % 0. It then follows from (1.3) that
for <Ii< ty
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sign [u,)xq sign 2’ (1) = sign ((p (il;_h. ) — _%_ (9 (M) + CP(M))) (1.5)

where 4, (%;) 1lies in the neighbourhood of’ the point u,* (u,).

To be specific we henceforth limit ourselves to the case when O<a<Ci,

It follows from Theorem 2 that if wu(z, t) is a piecewise-smooth solution of (0.1}, and
utu;" <0, then in the case of a local maximum (minimum) in x in z {t) wehave z' (1) << 0 (z' (1) >
0). Conditions (1.5} for Eq. (0.2) agree with the conditions for stability of discontinuities
/10/.

2. Classification of discontinuities of a piecewise-smooth solution of
Equation 0.1. Propagation velocities of the discontinuities. Integrability
of the Hugoniot conditions. &Let u{(z, !) be a piecewise-smooth solution of (0.1). We
call the smcoth line z = 7 (f) a line of discontinuity if u, has a jump on this line or u,
changes sign when crossing it. There are four kinds of discontinuities of the soclution (we
denote them by a,f, y.8), which are defined as follows: g (shock): u*u~<C0;f (signoton):
u,* =u,” = 0, u, changes sign on crossing the line z =z (¢);y (semi-signoton) utu,” = 0.
u,* %= u,”, u, changes sign on crossing the line z = z(1); 8 (simple discontinuity): uw,® =% u,~,
retains its sign as it crosses z = z (i).

Let u be a piecewise~smooth solution of (0.l1), and let x = z{l) be a line of discon-
tinuity for u. Then u allows of the representation

<

ufr, ) = p; (= bt) =+ g, (x — bt), u, <O (2.1
ufg ) =pl@a+cet)y = q@—ch) u, 220

Here and below we have used the notation b= Vi+a, ¢c=yY1—a.
In this case the Eugcnict conditions have the form
(b (2 (1) = bt) + gy (x (1) — b1)) (&' (1)) — b?) = (
(py (& () = ¢} — g (z (1) — ef)) (2" (1))* — ¢F)
pula () = bt g (2 (1) — 8) = py (2 (1) 5 ¢t) + g5 (2 (1) —c1)

When r = z (1) is a shock frent, we have from the first equation in (2.2)

]
T

Pzt — bty — gz (= b1 ({'(Mf —-ri <0
P ity —ct) = g (2 () — ) (T =82

o
(%]

Ineguality (2.2} shows that the ineguaiities
b (e (2.4

are satisfied for the velocity of its meticn in the case cf a shock.
Let r =z (t) be 2 signoton front. It follows from {Z.l) that

ur

bp, (2 (1) = bt) = —bg, (z (1) — bty =—cq,' (7 (1) — ct) = cp,’ {x (1) = c) (2.

It can be shown that if u,* exist, then U, un >0

We express u,* from Egs.(Z.5;

o

(b (2 (1) = 1) — g7 (2 (1) = b)) (+" (1) = b) = (2.
2bg, (x (1) — &)

20 (r'(t) — byg,r (x {1y — biy = (py (2 (1) — cth —
gor (2 (1) — e @7 () — ¢

It follows from (Z.6) that

pUsi) — i — g i) =t (r (P —e?

- 2.7
Pz () — o) — " (I ity — (z’(t)>’—b=>0 (

Relationsnip (2.7) characterizes the jump of the second derivatives on the signoton
front exactly as (2.2) characterizes the jump in the first derivatives on the shock front.
It follows from {(2.7) that

883

2" (| >b or (2 (1)i<c (2.8)

We find from the first equatiocn in (2.2) for the semisignoton that if the non-zero
unilateral derivative is positive, then |z’ (f) |=c¢. 1if it is negative then |z (ty | =1b. 1In

the case of simple discentinuities [z’ (1) | =c¢ 1if the unilateral derivatives are non-negative
on the discontinuity, and |z (1) | = b if they are non-positive. It follows from (2.4) and
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(2.8) that the shock and signoton velocities are in non-intersecting domains.

We refine the mentioned classification of discontinuities. We let «,(a)) denote the
shock for which ' >0 (¢’ < 0). B, (B_) the signoton for which = > b (2’ < —b), By the signoton
for which |z |<c. We call the signotons f,.f_. fast, and the signoton P, slow. Analogously
v, (1.) is a semisignoton whose velocity is & (—b), and ' (y") is a semisignoton whose
velocity is ¢ (—c¢). If necessary, we shall include the subscript zero in the notation for
the semisignoton to indicate from which side of its front the derivative equals zero. Namely,
wiys® are slow and fast semisignotons for which the derivative equals zero from the right
of the front, and oyf, %9+ are slow and fast semisignotons for which the derivative vanishes
from the left of the front.

wWe note that conditions (2.2) can be written in the form

26p, (x (1) = Bt) = (b + ¢) py (x (1) + ct) + (2.9)
(b —c)g (z(t) —ct)

2bgy (@ (1) = b)) = (b =) py (2 () — ct) +
B+ ¢)g(z () —et)

The passage from (2.2) tc (2.9) alsc denotes the integrability of the Bugoniot conditions.
The Hugoniot conditions will later be used in the form (2.9).

3. Local solutions and their diagrams. The local Cauchy problem. we consigder
piecewise-smooth solutions of (0.1} for which the kind of discontinuity can change only a
finite number of times on the line of discontinuity. The assumptions made regarding the dis-
continuities correspond to the most prevalent kind cf sclutions of (0.1). However, even these
solutions are fairly complex in structure. Local solutions have the simplest structure, where
the solution "in the large'" is a set of local solutions. We call a piecewise-smocoth solution
of (0.1) local in the semicircle z,— g < r<<ay— &, 4, Lt {1y + e, of the point (z, to)
if all the lines of discontinuity in this semicircle emerge from the point (r,.{,). within
its limits they do not intersect for {, << {. the kind of discontinuity does not change on it fecr
1, <<t , and all lines of discontinuity emerge on the liine 1 = t; — &,.

Let w(z. !) be a local solution of {C.1). We fix t and moving in the direction of
increasing x we write the kinds of discontinuities of w (r. t) successively, excluding the
simple discontinuities. For instance, the seguence f_.o_. a .fi_. means that as we more from
left tc right along x there are a fast signoton, then twoe shocks and after them still another
fast signoton. It is here possible that u still has simple discontinuities that are not
noted in the sequence. Such a sequence of the kinds of discontinuities of the local solution
is independent of t and is called a diagram of a local sclution.

Understandably, not every sequence cf the kinds of discontinuities is a diagram of a
certain solution. For instance, because of constraints on the velocity of the mcticn of
discontinuities (2.4) and (2.8), the diagrams .. f_.,....a,.2.,.% .. .PBea., -...€tc., are impossible.
Morecver, it can be shown that becuase ¢f the structure of (0.1} the Hugoniot conditions and
the condition that the mechanical energy should not grow are not realizable by sequences of
the kinds cof discontinuities cf the following kind:

BooBov Bl vl e el v B e B
HEE S hagea, o ot By - By B,
Here we have in mind twc diagrams f_, 4% ... B %-. --.. as the diagram B_, y., and both

these diagrams are impossible.

If the solution in the semicircle is monctonic in x, then we dencte the diagram of such
a gsolution by O. The diagram indicates the number of sections of distinct monotenicity of
the local solution. If there is a shock or a semisignoton with a refined index zero in the
diagram, then the kind of meonctonicity of the solution between the discontinuities can be
repoduced from such & diagram.

All possible kinds of local solutions are presented in Fig.l for fixed t. The number
above the arrow in Fig.l indicates the number of different variations in the behavicur of the
solution after the arrow. For instance, if the inequality u, (—bf + 0,1 >0 is satisfied
for the solution, then 42 continuations are pcssible in the domain 2> —b!f, These continua-
tions consist of 21 kinds of solutions that increase monotonically in the interval (—bt, —ct)
and 21 kinds of solutions having a shock in this interval, etc. As follows from Fig.l, the
local sclutions have 189 allowable (realizable) different diagrams.

We shall call a diagram stable if any local soluticn sufficiently close to the given
solution in the metric

C[a—f<r<asga<i<osg]

has the same diagram. DPiagrams that do not contain semisignotons are stable., The number of
such diagrams are 36 (see Fig.l). However, there are also stable diagrams that contain semi-
signctons. An example is the diagram a_, y", y.*., .. B graph of u (z,t) with such a digram
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for fixed t is displayed in Fig.2. 1In all there are 52 distinct stable diagrams.

Fig.2

Only 10 diagrams correspond to piece-
wise-linear local solutions of (0.1} that
describe the solution about dissipation of
the discontinuity. In the case of (0.1},
sclutions of the problem about the dis-
sociation of a discontinuity do not therefore
describe the qualitative manifold of scolutions
of this equation at all.

The local Cauchy problem for equation
(0.1} in a semineighbourhood of the point
(0,0) is to seek the local solution u{x, )
of (0.1) that satisfies the initial con-

Fig.1l

ditions
vz 0) = ug (2). uy (o, 0) = vy (1) (3.1}

Examples of existence and unigueness theorems for the solution of a local Cauchy problem
are presented in /l1l/.

4. The occurrence of discontinuities of the solution of (0.1). Let wu(xt)
be a solution of (0.1) of sufficiently high smoothness in the domain —e<Cr<le, —e<<i!<C(.
Therefore, u, retains its sign in this domain. To be specific, we will assume that u, > 0, u,
{0, 0) =0, and therefore, for t<C 0 the function u satisfies the equation

= g = 0 4.1}

we will assume that u, changes sign as x changes for the continuation u as a solution of
{4.1) for > 0. This means that discentinuities occur at the point (0,0) for the solution
of (0.1) that agrees with u for (< 0.

We will first examine a typical process (general situation) for the occurrence of dis-

continuities (v (r, f) 15 a versal deformation with parameter t /12/). For t<C0 the solution
uf{r. t) of (0.1) has the form u{r. ) = p{xr + ) >+ ¢ lor —<f). The functions p. ¢ are assumed
to be sufficiently smooth, and p (0} = ¢ {0) = . We will limit ourselves tc expansicns of the

functions p, ¢ at zero by the Tayior formula to the cubes of the arguments inclusive

»Y

uir. =oaf{r—~efff —Plr~ct) + vir o)+ (4.
Sl — ety = hir — o) = pl{r — et}

Since & critical point ceccurs in the sclution at t=0, thern u(r, 0) =o0% 6>0, i.e.,
v~ u=0p—4=0a-8= ¢ Without loss of generality, we car consider that u (z, %) has
the following form for t<C O

ulr, H=a(r—c)P+pla+c) +8(x~clf — Bz —ct) (4.

i

Ted

The occurrernce of a discontinuity at the point {Q,0) is ensured by the inequalities a -
>0, p< 0. By solving the eguation u,f{z, )= 0, we find the fronts of the fast signotons
r=z,{f). x = z_{t) from {4.3). Furthermore, the soluticn for z_ <Lz, {1 is found from
the relationship (2.5), The time of existence of the solution with diagram B.. B, is deter~
mined from the conditions z_' (f) << —b, x,/ {) > b. It can be shown that if {& [—»20,{8 |— >, O‘<
6, < la—6|/la=58]< ¢, then the time of existence of a solution with diagram f.. §, tends
to zero.

Thus, as a rule, for & smooth solution for 1< (0 twe fast signotons occur at the time
{ = 0 which can undergo further transformation after a certain time. If the time of existence
of these fast signotons is guite small, then it is natural to consider the passage at once
from a smooth solution for i< 0 to the next stage in the behaviour of the discontinuities
by bypassing the stage associated with the fast signotons. This is why it is worth investigat-
ing schemes for the occurrence of discontinuities nct of general leocation.
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We will present some examples of processes for the occurrence of discontinuities that are
different from the passage 0—p_, B, For t<0 let the solution u(z, ¢) have the form

p,(z+ct)+ql(:-ct), gt

u(z, 1) = pl(z-é-ct)-y‘-qr(z—ct), agr —ct (4.4)
pr(z+ct)+q'(z-—d), x> —c

pmy=—4A[q}™ g@==BIn|" pE=CIEM"

e @) =D|Ep n>1

The condition u; >0 for 1< 0 is ensured by the inequalities 4>0,44+B>0, D>0,C+
D>0. We note that if the numbers A4,B,C,D are positive, then the solution remains mono-
tonically increasing even for :> 0.

We shall seek fast signotons for the solution for t>0. We obtain for their fronts

(A4 — B4 et

z_(r):—w:k_t (4.5)
D — C*yet 1
7o) = S =kt b=y

If k. &L —b k,>b, then (4.5) indeed yields the fronts of fast signotons even for > 0.
If k.>-—b or k,<b, then for :>0 the sclution cannot have the diagram §_, f,.

We note that for 1> 0 the solution can be sought in the form of a homogeneous function
of degree 2n. Consequently, the fronts of the discontinuities are straight lines. For
simplicity we limit ourselves to the case n=1. For n>1 the investigations are performed
analogously. To be specific, let & > —b. k.>b, and therefore ( <0. Hence, for :>0 there
is a fast signoton in the diagram. We shall seek the solution with diagram «.,B, for :>0.
From (2.5) and (2.9), for z=at the shock front, we cbtain the equation

o . 4CDet (2 L bR
(b—jr)A(z—-c)--,—(b—r)B(:z—-c)-z—m)—_—-Ci):%W)—_—a (4.6)

Setting B =0 in (4.6) and taking intc account that 4 >0,<0,D>0, we obtain the
existence of a solution of {4.6) such that —b < a< —¢c. The existence of a solution with diagram
a_, p, is thereby proved.

We will examine another sclution for (>0 that has the digram f, B, For the front
z=f,t of a slow signoton, we obtain the eguation

Blc— B (c{D = Cl— b{D+C) = —2CDc (b — By) (4.7)

Having been given the numbers ¢, D.f,. where |B,|<e¢, we find the number B from (4.7).

For the passage 0-—f,, f, the appearance of singularities in the solution for ¢t>0 1is
possible that appear in the power-law growth of the second derivatives on one of the lines

z = +cts Although the passage 0-f, B, 1is not typical, as remarked above, and can vanish

for t<0 for small changes in the solution, the appearance of this singularity affects values
of the second derivative that are large in mangitude. The occurrence of a power-law singularity
for a solution that is smooth for t<« 0 is of interest in connection with the fact that the
corresponding derivatives are discontinucus in shocks and signotons, but the solution has
unilateral derivatives of fairly high orders.

We will examine in greater detail the origination of power-law singularities in the
sclution during the passage 0 -3, 1,% which is the passage to the limit 0—§, 8, and is
technically simpler to investigate. For ¢ 0 let the solution u be represented in the form
(4.4) where the functions pi, ¢ pr ¢-r are such that

PO =g M=p (N =g (W=p ' (0)=4q (0)=p"(0) =g (0)=0
Other conditions on these functions will be presented below. Since the solutiocn contains
a semisignoton y.° for ¢>0, then

. b—r¢ b=
9, (3} =— b—c F,(b__z E) (4.8)

The non-decrease of u in x for z> bt>0 follows from the inequality p,"(}) <0 for > 0.
Since p,’ (0) =0, it follows from the inequality p," (})< 0 that p,/’ (5} <0 for E>0. The con-
dition of monotonic growth of u for 71<0 results from the inequalities p./(f) <0 for E>0,
pi' M>0 for <O, p' M) —q' >0 for m; <, <0 For ¢t>0 we shall seek a solution with
diagram B, y,° Then u(z ) is given by the formulas

Pilztct)y~q(z—ct), 2 —dt
Plx+et)tg(z—ct), —aa<<r<Pt)

Polz+bt) —g(z—bt), B()<z<<bt
P {xAct)y =~ g (xr—ct), bK<z

u(r,t) =
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The condition for merger on the line r = bt determines the function

b
P = 525 r (S5t (4.9)

We take the front of the slow signoton in the form B (D= —ct+ kM k>0 M>1, We express
the function p,g¢,¢ in terms of p, from (2.5) and the form of B

g (b 0t kM) = —p, (b — o)tk kM) (4.10)
@’ (=2t + k) = —beip, (b — o) # - ke™)
p' (M) = beip ' (b — ) 1 £ KeM)

Since p,'<0 and ¢’ >0, then u is amonotonically increasing function for —a<z<B (8
and monotonically decreasing for P{t) < < b

Let the function p, (8} be infinitely differentiable for :>0 and M >1 an integer.
Then it fellows from (4.9) and (4.10) that p, (i), ¢, ¢ () are infinitely differentiable func-

tioqs for‘.§>0 n <0 We set g (%)= AFN? 4 o (EF-Y). In this case, we have from {4.9) that
p (8= BEYP L o 3%%. We find from the last inequality in (4.10)
* A 4 L, v N °

Equation (4.11) shows that the second derivatives of u can have a power-law singularity
on the line = —¢. For instance, if M =2, N =2, then ug(z2 i~z + eyt for s + 1> G
Thus, by taking the function p,{n} such that p (>0 for n«< 0, and p, (&) such that p (B <0
for E>0, we find u with the diagram B, v.° from {(4.8), (4.9), (4.10).

5. Bifurcations of discontinuities. 1lLet x= r{} be the front of a discontinuity
which is & smocth curve for { < 7<C?,. on which the kind of discontinuity is conserved. We
shall say that a discontinuity bifurcation occurs at the point ({r{f;). t,) if branching of
the discontinuity occurs for >, at this point or the kind of discontinuity changes during
passage through this point. It is assumed that there are no other discontinuities except

e point (X {4 ) 1< 4, .

We first consider the blfaruas,mn of the fast signotons. For <z 0 let the solution

have the diagram f_ and a signoton whose front zr = f{f) is a local max:.mum, where B () is

r =z {1} in a gertain semineighbourhood of th

gy e o Y =~ AR B o mamk Ty ommemmde b Firce ok § e 2 P2 ) Qe P I3y }\ F&y Rral ST
a3sumed \-\J .\JC E3 SUALJ.\«A.GL\L.L)' SR LD AWML LAV Gl }J Hp o *"’U e idd T (l )$ 173 / . Adi=ds i it
solution allows of the representation
o fa oY e e ey o Ry
joFL o O8] 7R Shaad S I N LR P U
U (J‘- f}::: — .
N M E R I S=1-10)

The functions p;. ¢ are assumed to be sufficiently smooth in a certain neighbourhood of

H

zero. Without loss of generality, it can be assumed that

5, () = g, {0 = p_ 1) = o, N = 5, {0} = ¢, {1 = n.) " (0} = g {0} == (
FENTF - F RN e v i PE R Fa ] AV kX At Fak 2 ) b S R ~
A typical case of bifurcation corresponds te the inequality
= N 7Y e Y 5.1
oo T g WUV {5.1]

It follows from ineguality (5.1) and the relationship (2.5} that p/ (M =0, ¢ =0
and we find from the condition wu, >0 for << 0 that p/{(1<(, ¢"(0) >0 For t>0 we
will seek a sclution with diagram o, in the form

| (e ety =g lx—cl) T a(l)
Wioety= | polr— by~ qlz—bi)  a()<z< bt
U p(r - bt)—g (x—bt) a2l

The unknown functions & (f), ¢ () are determined frxom (2.9). Namely, from the first
eguation in (2.9} we find w« {({) by the theorem on implicit functions. The second eguation
in (2.9) determines ¢ {n).

We set & {{) = —bt = k(1) #*. In order for the shock velocity to be incident in the appropri-

ate zone, it is sufficient that & {0) > 0. We set p, (3} = —2* — Pr* = 0 (2% so that p/ {a} =
—2= 8Py + O (%), We find g¢. Pr ¢ from the relationghip (2.5). 1In particular
b o 2y 4de b\
Gt} =g & _..3p§“ g }> - 0(x%)
) e b} on 0{,33}
pr L7 3}"’33) A =

Substituting the expressions for p,. g. p.. @ inte the first eguation of (2.9}, we find

that (b—ok () =1 b —c)d: =0
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If b==c, we obtain k(0) = 27»d from (5.2). Therefore, k (0)>0. The monotc?nicity
conditions for v are verified directly for ¢ > 0. We note that the ratio of the signoton and
shock front accelerations at the bifurcation point equal 2» and therefore is independent
of the gquantity a in (0.1), although this result is only valid for a5 0.

We once again examine the guestion of the bifurcation of a shock. For t< 0 let the
shock front have the form

a(t)= —ct +ki2+-0(%, k>0 0% =1
(r (1) is a fairly smooth function), and the solution allows of the representation
[ Pz +ct) =g (z—ct) z<a()

HEOD=) g tby gzt bt), z>a()

We set
p(z) = Az -~ Bz* + 0 (z%). ¢ = Cz + Dz* + O (%)

We find from the relationships (2.9) and the form of a (f)

pr (1) = — € - (b = ) (A=) k- (b=) 4De?) i 2,,(,, Ty + 0
G (2) = C (b —) (A + )k + (5 — ) 4D grii—— +0<zs)

For simplicity we will limit ourselves to the case when 4 =~ C > 0. We assume that
p." (0) + ¢" (0) << 0. This inequality ensures that there are no collisions of discontinuities
and is equivalent to the relationship
2—-a)(A-OVEk

(5.32)
4a (1 —a) < D

The occurrence of the signoton B, for t >0 can be determined from the functions p,. ¢,
If
—D<D, D=Ltz aud=0k (5.4)

d(b-—c)c?
then for t =0 a fast signoton B_ occurs, if
-D >D, (5.5}
then no fast signoton P, occurs for sufficiently small ¢ >0.
We note that the left side of (5.3) is always less than the right side of (5.4), i.e.,
a solution with a fast signcton f_ is generally possible. 1In this case the typical diagram
for t >0 has the form f, a, B, and the investigation of such a solution is always awkward,

Let the inequality (5.5) be satisfied. For ¢ >0 we shall seek the sclution with diagram
fo. For the slow signcton frent z = ﬁ (1) we obtain from (2.5) the equation

» (B )b = —cq" (B (1) — )

from which we have

__ b(AEC) k= (b—q2De
F0)=— (A-Cyk—(b—e)2D¢

It fcllows from condition (5.5) that |f’ (0) {<<ec. The passage a_-» P, considered
describes the process of shcck disappearance.

We will now consider specizl cases for the occurence of discontinuities for smocth
sclutions as examined in Sect,4. In the first, the smooth solution for r< 0 generates a
shock for t>>0, and the second aslow signcton. The results in Sect.5 are the foundation
for the examination of these passages. Namely, if a fast signoton occurs for t¢= 0, then as
follows from Sect.5, the transformation intc a shock is typical for it. Therefore, the first
of the special solutions in Sect.4 approximates the solution of the general situation with a
small existence time for the fast signoton. The second solution in Sect.4 characterizes the
solution of the general situation with small existence times for both the fast signoton and
the shock being formed from it.

6. Local solutions of equation (0.3). The concept of a local solution of (0.3)

is analogous to the corresponding concept for (0.1) (see Sect.3). Namely, a rectangle Il:
Zp = T < Ty &, oI — € 1is considered, as well as a fan of smooth curves Ty z =
Ti(t), toKt1<<tp+ &, i=1. ... N, starting from the points =z, fo; 2= 2;(t;) and do not
intersect in Il for t>1t, We denote by II;, i =0,1,...,N an open connected domain in II

that is bounded by the adjacent sides I;,.I'is; and the sides of II.

The function u (z, ¢) defined in [l and satisfying the following conditions is called a
local solution of (0.3). In the domains II;, i =0,..., N the function u(zr,¢) is twice con-
tinuously differentiable, monotonic in x, where the nature of the monotonicity is independent
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of t and satisfies (0.3). The lines I'; are called lines (fronts) of discontinuity of the
solution. To complete the definition of the concept of a local solution it remains to describe
the behaviour of the function u (z,t) during passage through the front of the discontinuity.

Four kinds of discontinuities «,f,y,8 were considered in Sect.2. These kinds of dis-
continuities were sufficient to describe the evolution of smooth initial functions of the
Cauchy problem for the equation (0.1). These four kinds of discontinuities are also conserved
for (0.3), where the Bugoniot conditions (1.2) and the condition of local non-growth of the
mechanical energy (l1.3) should be satisfied for the a-discontinuity. However, the above-
mentioned four kinds of discontinuities turn out to be insufficient for a solution of the
Cauchy problem to exist for (0.3) with smooth initial functions.

To ensure the existence of a solution of the problem under consideration, one other kind
of discontinuity must be introduced, namely, a A-discontinuity (a discontinuity in the
continuous displacement, spall). Its front is fixed, i.e., z(f) = z,. Taking into account
that x is a Lagrange coordinate of the particle, we find that after the formation of the h—
discontinuity, the whole system dissociates into two inexchangeable particles of the system.
Furthermore, it is assumed that u* > u~ and (u)* > 0.

We note that in the case of (0.3) the fronts of the y- and 8-discontinuities emerging

from the point £ =0,t=0 have the form z=-)"2¢t, 2 =0. If z(f) is the slow signoton front
emerging from the point z =10,¢t=0. then z(t)=0, i.e., the front is fixed for the slow

signoton.
We consider the condition on the a-, Pp~-discontinuities in a form taking account of the
specific features of Eg.(0.3). The corresponding conditions used in constructing solutions

of specific problems are in this form. We let ul(z, t) (u?(z, t)) denote the solution u (z. t)
of (0.3) in the domain where u, (z, 1) <O (u, {z, ¢) >> 0). Then considering z, =0, t; =0, we have
Wz, 1) =ple+1I L qg@—1 20— A4 (€.1)
u? (z, B =a(z) + b(xr)t + At22
From the relationships (6.1) and the Bugoniot conditions (1.2) we find
2)Zp (z () =12 =12 @) + 1o (x (O = (
Bz ()= A Q24 (z @) =121

foa)
[

where B (+) = b (), and 7 (1) is the front of the a-discontinuity (shock;.
1f z(t)is the front of a f-discontinuity (fast signoton), then by using (6.1 the con-
ditions or. the frornt can be written in the form

a’ (g (1) = b (z (1) = 0. p (2 () 1720 + (6.3
—q () — 130 = 4202
biriih = —At— 1 2 @) =12 ~=V2 z () — V2
We note that the ineguaiity
la (1) 1<} 2 (€.4)
is satisfied for the sheock front velocity o' (1) while we have |f' (1) !> V2 for the velocity

B’ (1) of the fast signoton front. .
Using the general properties of the solutions of (0.3), we will proceed to the solution

of specific problems for this eguation.

7. Occurence of r-discontinuities (discontinuities in displacement). We
consider the simplest problem for (0.3) for A =0 on the collision of two unformed systems
in which the spalling phenomenon occurs. Let —I, <<z<<l, I;,1,>0. A solution of (0.3) is
sought that satisfies the conditions

u(x, 0)== uolz), u,(x. 0)=14(2),
u (=1, )0, udl, )=0

11‘)0, — L Lz
ug (2) =0, uo(f)—_—.{ 0. 0<r <l

The soluticn u(r.t) for t<«< 0 1is given by the formulas

i Vi, Lzl
u(r.t)= 0, O<z<ls

i.e., for t< 0 the left system ~L,{r<<( moves to the right of a constant velecity V,
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while the right system 0<{z<{l, is fixed.
To be specific, let [, <{I;, We present the solution of the formulated problem for t> 0.

1f 0KV It !, then

Vi, —h<e<—V2
u(z, )= V(1 2—=22V2 —-Va<Lz<V2
0, Vaga<gh

1f I, <V2t <1, then
vun'2, —h<<e< -2+ V2
u(z, )= { V(' —2)2V2, —2i+V2aLa<V2
0, V?t Lzl
If ], Vﬁt < I, +1;, the solution has the form

VYL —h<e<~2+ 12
u(z t)y={ V() 2 —2)2)2 =212 T2~

Vie—1/Y2)., 2—12<r<h

Thus, up to the time ¢, = (I, + [)) ]r§ the inequality wu,<{0 is satisfied, and therefore,
the problem is solved within the framework of the linear formulation.

For t> (I, + 1,)/}'2 the solution has the form

[ VL2, ~h<rK<h =1
u(r, t)= , R 3
| Vie—i)3) L—h<z<l

i.e., at the point z =1, — I, a fixed discontinuity again originates.

Therefore, the impact of the left system of length I, moving to the right at a velocity
V in a fixed right system, results after a certain time in the fact that a piece of length I
is torn off from the right system, which will move to the right with velocity V while the
remaining particles will be fixed.

8. Occurence of a shock from a static initial state. Let us consider a
Cauchy problem for (0.3) with A =0 and the initial corditions

ulz, 0) = ug(z), ue {2, 0) =0

where u,(z} is a continuous function, u, () >0 for 7 << 0,u, (z) <0 for 2>0. For {>0
we seek the solution in the form

Uo (I)’ x <a([>
u(z,t)={ pla—=VIj—qz—=12). an)<a<<}'U
(o (z =1 2t) — uy(z — Va2 =V

where r =a () 1is the shock front, and p(}) = u, (8.2, &£ > 0. _

The function a« (¢} is found from the first equation in (6.2): u, (a (1) + ¥V 2t) = u, (a (1).
Furthermore, knowing a (t). we find ¢ (n) for n <0 from (6.2) with the lower minus sign.
Then the monotonicity condition wu, {0 should be confirmed for a(f)<{z < 172t , as should
inequality (6.4).

Let uy(z) be an even function; then a ()= —)'2t2 and ¢(n) = uy (n/3)'2. The appropri-~
ate conditions of monotonicity for sufficiently small ¢t >0 are confirmed directly. There-
fore, the solution actually has the diagram a_.

We note that more complex structures of the sclution are indeed possible in the problem
under consideration. For instance, if u,(s) = — |z|/y, then for ¢>0 the solution has the
diagram a_, a,, %, In this case the solution is a homogenecus function of degree Y3, and the
shock fronts are lines

3Yi—1g 4— Y72
R -7

r=at, z=a,l, a = — ) a, = 7

In the problem under consideration the solution in the case of a smooth function uy (z) generally
has the diagram a_ only in a small time interval.

9. Collision of a rarefield system with a rigid wall (4=0). Let >0 and
the system be located to the right of the wall z=0 for 1<0, i.e., u, (z, ) >0, £ + u (z,
t) > 0. Furthermore, let

u(z, 0) =us(a), (2, 0) = —v(z), u (2)>0, v(0)>0,
Ug (0) = 01
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1.e., near z =0 the system moves to the wall z =10 for t< 0.
For small ¢>0 near z =0 the solution has the form

u (z. t)=! P+ V2yp(V2U—1), 0<z<al)
’ | w (2) — tvia), r>alt)

T}?erefore, a compression zone abuts on the wall, which is terminated by a shock whose
front is z = a (I}, From (€.2} we find the equations for p (%), a ()

=2V 0% Lta W =VIl W) —twe®)— Ve (9.1
where V' (8) = v (k). V(0) = 0. From (9.1) we cbtain «’ (0), p' (0}
. vy
o' (U) = ;‘0. YV o =t "‘__""‘_21_02 ©.2)
pO) = -%(‘f (o) + 20e* — uy), wy' = uy’ (0), vy = v (0)

If ug{z) = k2, {2} =1, then (2.2) yields the solution for all :1>0, Namely, () =a ({1,
p(§) = p" (O)E.
We trace the whole collision process in this case (for 0<z< D For 01 ta
2
u(x 1) = { 2pr, U oCat
kr —vgt, al !
If La<t— la=1V7E then
2pr, O asi—Y2¢—1a)
i 2p 7__,1/?)«”,1‘/’6&3 lmv‘, (t = Loy«
Finall f > - n
Yy, 1 la =172 thenu (0= 2p 1+ IV 2.2 ¥ 3 when 0 < <. Therefore for 1> la-~1}2
the system becomes compaw{axt 0} and moves to the right at a constant velocity

vir iy =

L

rg?
’*""’A~y’k2—z;0 <o

Thus, a uniformly rarefied systen (u, = k> 0}, moving to the left at a constant velocity ¥ because
of 2 collisionwith a rigidwall, will recoil fromit after a certain time and will move to the right with
constant velocity r. 1, <1y, a85& compact system (ux= ()

10. Reflection of a compression wave from a free edge. The fellowingproblem is
considered for (0.3) with 4A=0. For <« 0 let the solution of (0.3) have the form
[0 0 <—12
wlr )= 1 _ % \,_ 1

L7tz =13, =12 <x

The problem is tc £ind the solution for ¢ >0 under the condition u. (0, 1) > 0. It turns out
that the form of the solution depends g:}:staﬁzlhly cn {"(§). Hence, we consider different cases of
the behavicur of ;' (&)

Let /(%) 7t then for 10 the sclutior has the forn

FEH<LEZ0O)=0

[ 1r~V2— ()2 —2) O ~\1<1‘§t
IEFE W V3 \

Indeed, if (<l <} Jt. then

ule, t)=

‘\/

vy = A=)~ (72— )= R 2
Therefore, in this case the sclution of (0.3} agrees with the sclution of the linear
problem {a compression wave reflected from a free edge remains a compression wave).
1f # (8] is a mornotonically increasing function, then the solution of {0.3) for t>0
has the form

P+ 2 201 2 —1) 0<a <Y

o (10.2)
lz(z+1f2r>‘ >V

ulr, t)=

In this case a semisignoton %y, occurs at the point z =0 for ¢=0.

We note that if f(§) has a discontinuity of the first derivative at the point §;. then
for t> E,212  a disdontinuity in the displacement occurs at the point o = Ee2. If F(B)=
0 for E>E,. then for z>§2 and 12> E/2)2 the reflected wave propagates only a finite

distance to the right.
We now consider several cases of a compression wave reflected from & free edge, when

§" (§) changes sign for [ = Eo 1" (ﬁ ye= 0. Let B0 for EE f(B) >0 for E> k. We
consider the function § = E(y), i.e. the middlie of segements connected identical values cf
the function y=f (&, <yr<n <0
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Let E(y) be a monotonically decreasing function such that

min k() = & @) = & maxE () = § () = ko 26> ko .
In this case the solution has the form (10.1) for 0K V2t < - If §, K V3t then

fz+ Vo) +f(V2—z)p  0<a<<B()

_ | a(@)+tb(z) ﬁ(t)<z<§1
“ED=) ) < 1d ), h<e<VZ
fz+V2). x> ]/2t

Here z = P (f) is the front of the signoton f_, z = ]/Et is the front of the semi-
signoton %,. The front z = B (f) is determined from the equation

P2t +BW)—F (W2t —p@)=0
We hence find that
Vi + B> 8 V2—P)<E B ()<O

since t (y) is a decreasing function. We find from the eguation for f (f) that

51 W2 —B) = (V2B )
fwvm—ﬁunfvwvmepa

pt)y=—

and, therefore, B’ (f) < —17, i.e., z=0() 1is actually the signoton front. The functions
¢ (), d (z), a (z), b (r) have the form

cm=ﬂh—wwxdm=WWm)
b(x)=V2(¢ (072t @) =2 =1 (2 ) — 1)
am=f1mm+n+fumm—n—szm

where t =t (z) is a function inverse to z = f (f).

The monotonicity condition for the function ¢ (x) — #d (x) is confirmed directly, while
the monotonicity of the function a(x) — b (r) follows from the fact that P () < r <&, 1 (2)
is a monotonically decreasing functicn, and therefore > t{x) > ) 3, Thus, _J.n this case
the solution has the diagram f_, %, in semineighbourhood of the point (&, &,V 2).

If t=§(y) is a monotonically increasing functicn, then for 0<¢ 1< b }'2 the solution

is the same as in the initial stage of the preceding example. If 2> %, 3 then

[a(r)—‘rb(x). 0Lz B
u(z )= fz =V i1 —2) p)<z<V
[j(z—]’ir), 2>

where x = P (f) is the front of the signoton (B’ >>1'2), the functions B). alx), b(x) are
determined by the same formulas as in the preceding example. 1In this case the signoton occurs
at z=0 and moves to the right while in the previous case it occurred at z = &, and moves
to the left.
We examine the problem of compression wave reflection from a free edge when f"(§) >0 for
.73 <0 for £>t, Here for 02V U<, the solution has the form (10.2). For
t, we seek the scluticn in the form

[UR

<
2y i 1>
|'f(21)—21']' (21)(|/"-.‘1——z) 0<r<
v ) =1 1=V —gr =), ay<z<YR

[/(1—1"51)4 >

where z=a () is the shock front, and 2z (5212 =}, The functions a (1. ¢ (n) (g (0) = 0) are
desired. We have for them from the relationships (6.2)

fla)—VZo=7Qa®) = (" Tt—a @) Q@) (10.3)
gl = VIn=(Ti—a @i 2a)

By the theorem of implicit functions « (1) is found from the first equation in (10.3),
and ¢(m) is found from the seccnd. The complexity of the first equation in (10.3) is that
if f" (k) =0 and " (§) =0, this equation has two solutions. One, a ()= }/2t, is not suitable.
To find o' ((,/2)2) for the second solution, the first equation in (10.3) must be differentiated
thrice and we must set :=1},/2)2. We hence obtain a' (},2y32) = — V5.
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Therefore, in the case under consideration, the compression wave moving to the left is
transformed into a rarefaction wave of the semisignoton type on being reflected from a free
edge. Then at a time 1=1t,/2¢y2 a shock originates on the front of this semisignoton and
moves to the left at a velocity — VI/5 at a time t=§,/2 /7.

Note that this yelocity is independent of the kind of function ¥,

11. Motion of particles of anelastically granular medium in a gravity force
field. 1°. Lift of a compression wave and its reflection from a free surface. The x-axis
in this problem is assumed to be directed downward. We consider egquation (0.3) for which
A>0 and 22> 0 and we take its solution for ¢<J0 in the following form:

— Axtj4, 0Lag— V2
— AP (V24 2), V2

where f(0) =10, f(3)K 0 for £3>»0. The edge z=0 is assumed to be free, i.e., u, (0, 1) >
Q. Thus, for t<«{0 a compression wave is propagated from the bottom upward (against the
direction of the gravity force), and reaches the free surface at t=20.

u(z, t)m(

First, let |[ (§) | <{ A/4. In this case, for ¢>>0 the solution agrees with the solution
of the linear problem and has the form

e =V + (13t~ 2)— A¥h, 02Vt

1072 = 0)— A7 4, >V

u(I, t):[

Indeed, in this case we have for 0 <o <C V2
Uy = 2x (" (7)) — A4y < 0
Now, let f"() be a monotcnically decreasing function and let there be & 7, >0 for
which J*(2r,) = A4 4. In this case, for 0<{t<{t = 2/F¥2 the solution has the form

} LA — 27— 27 22t) = f(22) + 2} 2t — 2} (21),
ulz. t)y= OQIQ]"‘QZ
l =12 — A4 22V
In fact, for 0 7 <C V2t <« 2, the inequality
uy =4 (2 — D) (2 — A4 >0
is satisfied.
For t»(; we shall seek the soliution in the form
L4 (R 2 2t — 2 Zrt) = f{22) = 2(} 2t — 1)1 (220
U relalt)
OV —=2)—r(] It — 1) — Azt a2 < ]'it
(V2w 2)— A4, 2] 3

where z = o {{) is the shock front.
We find equations for o {f) and r(§) from the relationships (6.2}

Flae =12y =7y — (3 —a i) Qa)~
Ved {a {8y~ V2

r A —a () =02 —a @) 2 @) = A
VA (= e ()

By the theorer on implicit functions, « (¢} is found from the first equation in (11.1),
and r{f) is determined from the second equation in (11.1). Let f7 {2x,) %= 0 then by differen-
tiating the first eguation in {i1.1) three times with respect to t and setting (= 1[{; Wwe
£ind that a' () = — } 2.5.

To complete the investigation of the solution in the neighbourhcod of (¢ = {; it remains
to confirm that wuy<C (0 for a ()< rs ;'2{. To prove this inegquality it is sufficient to
show that u, (} 2/ — 0, 1) <0 for >t We find from the second eguation in {11.1) that

0, (VI —0,0) = 2 (V3 — 1) (" () — 4.4), 2 <h<2VZt

and since f'(A) — 4.4< 0, then u (} 2t~ 0,0<0.

Thus, in the problem under consideration the compression wave is reflected from the free
surface and is transformed into a rarefaction wave of the semisignoton type moving downward.
Then, at the time {; = 7/} 2 a shock moving upward originates at the semisignoton front, the
magnitude of the shock veloicty at the time of origination here equals V2;5, i.e., is
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independent of either f or A.

Further investigation of the evolution of the solution for :>¢ is made difficult in
that in the general case it is impossible to find the function z=a (1) explicitly from the
first equation in (11.1). Consequently, we will examine a specific function

j(,)_{—5’+35’-—35, 0<E
ol =1, et
In this case the shock originates if 4 <24. Here =1, — A/48, o (1) = (— V2t + 62,):5.

Furthermore, it is confirmed directly that the shock reaches the free edge and is reflected
by the compression wave.

2°. Incidence of a rarefied system on a rigid foundation in a gravity force field.
The x-axis is assumed to be directed upward. In this case 0z <!, 4 <0, u{z,0) = u,(2),
u; (z, 0) = vy (z). The solution for ¢< 0 is taken in the form

u(z,t) = u, (z) + tvg (x) + 4222
where u,(r,$)> 0,2+ u(x,?)>0. For ¢t2>0 the solution is sought in the form
( t)_{p(z-}-]fﬁt)-p(]fit—x)-—Azz//A, 0Lz <Lalt)
WA E= ug (2) + toe (2) — A2, alt) <z <!

where z = a () is the shock front. We find equations for the unknown functions a (f) and
p(§) from the relationships (6.2)

+2V2p (2t = o) = VZ (g (@) + tve (@) = Vo (@) + A V2 (@ £ V21 (11.2)

We consider the system (11.2) in the special case when

ug (2) = k1%, 1y (7)) = =1z
In this case for t< ¢ the sclution has the form
ulz, t) = kz* — Vaf — A122
The condition of no signoton is ensured for ¢>0 by the inequality V < 21/2k. The solu-
tion for t>0 is a homogeneous function of the second degree, i.e., p(§) = pt? a (1) = at. From

(11.2) we have H
A (e — 21 — bdkat - 8 (kx? — Vat = 0
We set «=/22; then 4, k | are connected by the relationship 94 + 20k — 16 Vir =
We set A = —4k'3,

¥ V 2k 4.
Thus, for 0<t<y2l the solution is determined by the formulas

-3
_ IK- kn+_;_k;:' o<r<yR
u(x, 1) = -

3 =
kze_l_z;/;,z ~ ok, YUl

If YZTi<:1<3y2Zi2, then

u{z,t) =

If 3y212<e<9Y 5, then

5
-L}leklf—-s—klr—‘%kﬁ. < <Y -3
u(rt) = .
CAPUPU VNS 5. 9 <
ThR TRk (2 ) -k, YR8 <

For 9V 2’5 <t 22 the solution is determined by the equalities

2% 5, 1 .
TVQ—’}‘"’ M+ ke o<z<_25_11_1/2:

2

" kx? 21
PVt g~V + 5, Fi-VE&z<a()

u(z,ty= 5 15 3 2 5%
—_— e k1= o kxl — kIt — k12
e 3 kz Y kl 3 kt +_rkt (2z 4 1),

a(t) Sz Y2t -3l
5, ,. 7., 5 . LI
TRkt — k(- VI — gk, YU 32

where r=2() is the shock front.
We shall consider ¢(—3l) =0, then
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(20 . 39
Pl5t)= =gt =~ gk i — g ki
We find the functions p (&), a () from the relationships (6.2). For a(y we have
2o~ V3 = = ke 3" 35 a8 k:s-:-ig’_'—’k: (erz-;.u-.’Tku—y'?n-‘
- 3

Hence

For the function p(3) we have the eguation

N o 5‘1{2 2y = dkia B

The behavicur of the solution for large values of t can be investigated within the
framework of analogous constructions. However, the caleulations in this specific problem
become extremely awkward.

We write the gualitative structure of the solution of the last problem for 0 :<2 VEL
For 1=0 a shock originates at z= 0 and moves upward at the velocity V22 For 0< < yn2
the medium is compressed, u (0. 1) =0 and for Y2121 the medium is rarefied. This
structure of the solution holds for 0 sy M2, If Y2t 9Y25 then the medium is in
the compressed state: wu(, O =0 u (=0 If ¢YAIC g2 p'U then at the point z=3I5 a
semisignoton ®_ and a shock o, moving upward at a velocity 3241 originate at t= gy 3ia.

Therefore, the mediur is rarefied between the shock and semisignoton fronts in the time
interval under consideration, and is ir the compressed state the rest of the time. Note that
the velocity of the orignating shock is low.
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